Defination:

Any cyclic organic compound in which there is atleast one atom of an element is other than carbon (N , S , O etc) called heteroatom.

Examples:

Classification of Heterocyclic Compounds

1) 5 member Heterocyclic Compund

A ring contains 5 atoms.

a) One Heteroatom

b) More than one heteroatom

2) 6 member Heterocyclic Compund

Those heterocyclic compunds in which 6 atoms are present in ring.

a) One Heteroatom

c) More than one heteroatom

3) 6 member Heterocyclic Compound

A heterocyclic compound containing 7 atoms.

4) Condensed Compound

Those heterocyclic compunds in which atleast two rings are fused.

Nomenclature of heterocyclic compunds:

Pyrrole:

It is 5 membered heterocyclic compound containing nitrogen as heteroatom.

Physical Properties:

- Pyrrole is a liquid which rapidly turns brown on exposure to air.
- Weakly basic in nature.
- Sparingly soluble in water but dissolves in Ethane and ether.
- Boiling point -129°C.

Resonance Structure Of Pyrrole

- Chemical formula : C₄H₅N
- Molecular weight: 67
- It occurs naturally in alkaloid, chlorophyll, haemoglobin.

Synthesis of Pyrrole

1) Paal-Knorr Synthesis

In this reaction 1,4-diketone compound react with ammonia and gives derivatives of pyrrole.

Mechanism

Chemical Reaction Of Pyrrole

1) Sulphonation

In this the reaction pyrrole is treated with sulphuric acid in the presence of pyridine to gives pyrole-2-sulphonic acid.

Medicinal use of pyrrole & it's derivatives

- i) **Procyclidine** It is an anti-muscarinic drug used in the treatment of parkinsonism.
- ii) Atorvastatin Useful to prevent cardiomascular diseases.

Furan:

It is five membered heterocyclic compound containing oxygen as heteroatom.

Furan

- Chemical formula : C₄H₄O
- Molecular weight: 68
- Hybridization : SP²(Carbon), Sp³ (Oxygen)

Physical Properties:

- It is a colourless liquid.
- It is only slightly soluble in water.
- It has a chloroform like smell.
- Boiling point is 32°C.

Resonance Structure

Synthesis

1) Paal-Knorr Synthesis

In this reaction, a cetonyl acetone convert into an end form which further on dehydration give 2.5-dimethyl furan.

Mechanism of Paal-Knorr synthesis of Furan

Mechanism

Chemical Reaction

1) Nitration

Medicinal uses:

- i. Used in the treatment of antidepressants.
- ii. Analgesic, Muscle relaxant, antihypertensor.
- iii. Used as solvent for resin.

Thiophene:

It is five membered heterocyclic compound containing sulphur as heteroatom.

Discovered by Vector Meyer in 1882. Thiophene is aromatic in nature.

- Chemical formula : C₄H₄S
- Molecular weight: 84
- Hybridization : SP²

Physical Properties:

- It is a colourless liquid.
- It is insoluble in water but miscible with most organic solvent.
- It have an odour very similar that of benzene.
- Boiling point is 84°C.

Synthesis

1) Paal-Knorr Synthesis

Synthesis

1. Paal-Knorr synthesis of Thiophene

 The condensation of 1,4-dicarbonyl compounds with sulfur sources gives thiophene.

Chemical Reaction

Medicinal Uses of Thiophene:

- Used as medicines.
- Used as anticancer agent.
- Diuretic.
- Antiaesthemetic agent.
- Sedative and hyponotic.
- Anticonsulent.

PREPARED BY: 1) Kunal Dhondibhau Dangat(11)

2) Aryan Kiran Kute (38)

GUIDE BY: MRS. CHIWADSHEETI N.S. (ASSISTANT PROFESSOR)

SUBJECT: PHARMACEUTICAL ORGANIC CHEMISTRY-III

TOPIC NAME: HETEROCYCLIC COMPOUNDS

SUBJECT CODE: BP401T

CLASS: SECOND YEAR B.PHARMACY

ACADEMIC YEAR: 2022-2023