HETEROCYCLIC COMPOUNDS

1. PYRAZOLE

Molecular formula– $C_3H_4N_2$ Molecular weight – 68.07 gm/mol

Structure -

Resonance structure-

Synthesis-

Knorr Pyrazole Synthesis -

Chemical properties -

Reactant	Reagent	Product
ESR		
Sulphonation	Sulphuric Acid	Pyrazole
Pyrazole		Sulphonic Acid
Halogenation	Chlorine	Chloro Pyrazole
Pyrazole		
Nitration	Nitric acid,	Nitro Pyrazole
Pyrazole	Sulphuric Acid	
Reduction	H2(Hydrogenation)	Pyrazolidine
Pyrazole		
Oxidation	O3(Ozonolysis)	Glyoxal
Pyrazole		

Medicinal Uses -

Used as Anti cancer (Pyrazofurin)
Used as Anti Inflammatory(Lanazolac)
Used as Analgesics(Difenamizole)

- Used as Analgesics(Difendinizor
- •Used as Vasodilator(Sildenafil)
- •Used as anti depressant (Fezolamide)

2. IMIDAZOLE

Molecular Formula –C₃H₄N₂ Molecular Weight –68.077gm/mol

Structure -

Resonance Structure –

Synthesis – By action of NH₃ on glyoxal –

Chemical properties -

Reactant	Reagent	Product
ESR		
Nitration	Nitric Acid	4-Nitroimidazole
Imidazole		
Sulphonation	Sulphuric Acid	4-Imidazole
Imidazole		Sulphonic Acid
Halogenation	Chlorine	4-
Imidazole		Chloroimidazole
Alkylation	Potassium	1-
Imidazole	Hydroxide,	methylimidazole
	Iodomethane	
Oxidation	Hydrogen	Oxamide
Imidazole	peroxide	

3. OXAZOLE

Molecular formula $-C_3H_3NO$

Molecular Weight- 69.06 gm/mol

Structure -

Resonance structure -

Synthesis -

Fischer oxazole Synthesis -

Chemical properties -

Rectant	Reagent	Product
ESR		
Nitration	Nitric acid	5-nitrazole
Oxazole		
Sulphonation	Sulphuric	5-oxazole sulphonic
Oxazole	acid	acid
Halogenation	Chlorine	5-Chlorazole
Oxazole		
Oxidation	Manganese	Imide
Oxazole	dioxide	
Deprotonation	Lithium	Isonitride
Oxazole		

4. THIOZOLE

Molecular Formula - C₃H₃NS Molecular Weight - 85.13gm/mol

Structure -

Resonance Structure -

Synthesis -

Hantzsch Thiazole Synthesis

Chemical Properties -

Reactant	Reagent	Product
ESR		
Nitration	Nitric acid	5- nitrothiazole
Thiazole		
Halogenation	Chlorine	5 – chloro thiazole
Thiazole		
Sulphonation	Sulphuric acid	5 – thiazole sulphonic
Thiazole		acid
Oxidation	Hydrogen peroxide	Thiazole-N-Oxide
Thiazole		

5. PYRIDINE

Molecular formula – C₅H₅N Molecular Weight – 79.1 gm/mol

Structure –

Resonance structure -

Synthesis -

Hatzsch pyridine synthesis -

Chemical properties –

Reactant	Reagent	Product
ESR		
Nitration	Nitric acid	Nitropyridine
Pyridine		
Halogenation	Chlorine	Chloropyridine
Pyridine		
Sulphonation	Sulphuric acid	Pyridine sulphonic
Pyridine		acid
Reduction	H2	Piperidine
Pyridine	(hydrogenation)	

6. QUINOLINE

Molecular formula – C₉H₇N

Molecular weight – 129.16 gm/mol

Structure-

Resonance structure -

Synthesis – Skraup quinoline sunthesis –

Chemical properties -

Reactant	Reagent	Product
ESR		
Nitraion	Nitric acid	5-nitroquinoline
Quinoline	Sulphuric acid	5 quincline
Quinoline		sulphonic acid
Halogenation Quinoline	Bromine	5-bromoquinoline
Oxidation Quinoline	CH ₃ CCOO-OH/peracids	Quinoline-n-oxide
Reduction Quinoline	H2/Pt (hydrogenation)	Tetrahydro quinoline

7. ISOQUINOLINE

 $Molecular\ formula - C_9 H_7 N$

Molecular weight -129.16 gm/mol

Structure -

Resonance structure -

Synthesis –

From cinnamaldehyde –

Chemical properties -

Reactant	Reagent	Product
ESR		
Nitration	Nitric acid	5-nitroisoquinoline
Isoquinoline		
Halogenation	Bromine	5-bromoisoquinoline
Isoquinoline		
Reduction	H ₂ /Pt/Ni	Decahydro
Isoquinoline	(Hydrogenation)	isoquinoline
Oxidation	RCOO-OH	N-oxide
Isoquinoline	Peracids	

8. ACRIDINE

Molecular formula – C₁₃H₉N

Molecular weight – 179.13 gm/mol

Structure -

Synthesis -From diphenyl amine

Diphenyl amine

Acridine

Chemical properties –

Reactant	Reagent	Product
ESR		
Nitration Acridine	Nitric acid	2-nitro acridine
Halogenation Acridine	Chlorine/Bromine	2-chloro acridine/ 2-bromo acridine
NSR With soda amide Acridine	NaNH ₂	9-aminoacridine
Reduction Acridine	Pt/HCl	Octahydroacridine
Reductive alkylation Acridine	n-pentonoic acid UV light	9-butylacridine

9. INDOLE

Molecular formula $- C_8 H_7 N$

Molecular weight – 117.15 gm/mol

Structure -

Resonance structure –

Synthesis -

Fischer indole synthesis –

Chemical properties -

Reactant	Reagent	Product
ESR		
Halogentaion Indole	Chlorine	Chloroindole
Nitration Indole	Nitric acid	Nitroindole
Reducion Indole	Dil.acid	3H-indolium cation
Oxidation Indole	Mn-MC6*a H ₂ O ₂	3-hydroxy- indolenine

10.PYRIMIDINE

 $Molecular\ formula - {C_4}{H_4}{N_2}$

Structure -

Synthesis -

From 1, 3 dicarbonyl compounds

Medicinal uses -

11.PURINE

Molecular formula $- C_5H_4N_4$

Structure -

Synthesis -

From uric acid

12. AZEPINES

$Molecular\ formula - C_{6}H_{7}N$

Structure -

Synthesis -

From nitrobenzene

Medicinal uses -

REFRENCE:

- 1. Textbook of organic chemistry Arjun Bahl & B.S.Bahl
- 2. Textbook of Pharmaceutical Organic Chemistry By PV Publication
- 3. https://www.slideshare.net
- 4. By google :-

https://www.goggle.com/search?q=cycyoalk anes+pharmaceutical+organic+chemistry+pd f&oq=cycloalkanes

PREPARED BY:

- 1. LONDHE SHRAVANI MAHENDRA(39)
- 2. GAIKWAD SHRAVANI RAJENDRA (24)

GUIDE BY: Dr. CHIWADSHETTI N.S.

(Assistant Professor)

SUBJECT: PHARMACEUTICAL ORGANIC CHEMISTRY III

TOPIC NAME: HETEROCYCLIC COMPOUNDS

SUBJENCT CODE: BP401T

CLASS: S.Y.B.PHAM

ACADEMIC YEAR: 2022-23