RNA vs DNA | | DNA
(Deoxyribonucleic acid) | RNA
(Ribonucleic acid) | |-------------------------------|---|---| | Definition | It's a lengthy polymer. It has 4 bases: adenine, guanine, thymine, and cytosine, with a deoxyribose and phosphate backbone. | It is a ribose and phosphate-
based polymer having four
different bases: uracil, guanine
adenine, and cytosine. | | Location | DNA is found in a cell's nucleus as well as its mitochondria. | The cytoplasm, nucleus, and ribosome all consist of RNA. | | Sugar portion | It has 2-deoxyribose. | It has ribose. | | Function | The transfer of genetic information is made possible by DNA. It takes the shape of a long-term storage medium. | The transmission of the genetic code required for protein production from the nucleus to the ribosome is accomplished by RNA. | | Predominant Structure | DNA is a nucleotide-rich double-stranded molecule with a long chain of nucleotides. | RNA is a single-stranded molecule with a shorter nucleotide chain than DNA. | | Propagation | Self-replicating DNA replicates on its own. | RNA does not have the ability
to reproduce on its own. When
it's needed, it's made from
DNA. | | Nitrogenous Bases and Pairing | The base pairing is as follows:
GC (Guanine pairs with
Cytosine) A-T (Adenine pairs
with Thymine). | The base pairing is as follows:
GC (Guanine pairs with
Cytosine) A-U (Adenine pairs
with Uracil). |